[1]于相龍,周濟.力學超材料的構(gòu)筑及其超常新功能[J].中國材料進展,2019,(01):014-21.[doi:10.7502/j.issn.1674-3962.2019.01.02]
YU Xianglong,ZHOU Ji.Mechanical Metamaterials: Architected Materials and Unexplored Properties[J].MATERIALS CHINA,2019,(01):014-21.[doi:10.7502/j.issn.1674-3962.2019.01.02]
點擊復(fù)制
力學超材料的構(gòu)筑及其超常新功能(
)
中國材料進展[ISSN:1674-3962/CN:61-1473/TG]
- 卷:
-
- 期數(shù):
-
2019年第01期
- 頁碼:
-
014-21
- 欄目:
-
前沿綜述
- 出版日期:
-
2019-01-29
文章信息/Info
- Title:
-
Mechanical Metamaterials: Architected Materials and Unexplored Properties
- 作者:
-
于相龍1; 周濟2
-
1. 中國科學技術(shù)大學 中科院材料力學行為和設(shè)計重點實驗室,安徽 合肥 230027
2. 清華大學 材料學院新型陶瓷材料與精細工藝國家重點實驗室,北京 100084
- Author(s):
-
YU Xianglong1; ZHOU Ji2
-
1.CAS Key Laboratory of Mechanical Behavior and Design of Materials (LMBD), University of Science and Technology of China, Hefei 230027, China?
2.State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering
-
- 關(guān)鍵詞:
-
力學超材料; 負泊松比; 五模式; 輕質(zhì)超強; 負熱膨脹
- Keywords:
-
mechanical metamaterials; negative Poissons ratio; pentamode; ultralight & ultrastiff; negative thermal expansion
- DOI:
-
10.7502/j.issn.1674-3962.2019.01.02
- 文獻標志碼:
-
A
- 摘要:
-
力學超材料是具有反直覺力學性質(zhì)的人工微結(jié)構(gòu),其性能取決于人工原子的幾何結(jié)構(gòu)而不是材料組分。典型的力學超材料通常與4個彈性常數(shù)相關(guān)聯(lián):楊氏模量E,剪切模量G,體模量K和泊松比v。按所調(diào)控彈性常數(shù)的不同,將幾何結(jié)構(gòu)種類繁多的力學超材料分類為負泊松比拉脹材料(v<0,G>>K)、剪切模量消隱五模式反脹材料(G<<K)、負壓縮性材料(-4G/3<K<0)、模式轉(zhuǎn)換可調(diào)剛度材料(E)、低密度超強仿晶格材料(E/ρ)、負熱膨脹材料;谌斯ぞЦ窠Y(jié)構(gòu)和手性/反手性幾何結(jié)構(gòu)單元,扼要地論及在人工幾何構(gòu)筑方面的基本情況,以及不同構(gòu)型與超常力學性能之間的聯(lián)系。從而為拓展力學超材料的研究領(lǐng)域提供了系統(tǒng)性的架構(gòu),展望了面向3D打印技術(shù)制備的力學超材料的發(fā)展前景。
- Abstract:
-
Mechanical metamaterials are manmade structures with counterintuitive mechanical properties that originate in the geometry of their unit cell instead of the properties of each component. The typical mechanical metamaterials are generally associated with the four elastic constants: Youngs modulus E, shear modulus G, bulk modulus K and Poissons ratio v. Here a clear classification of mechanical metamaterials is established based on the tuning elastic constants. Mechanical metamaterials can be divided into negative Poissons ratio auxetic metamaterials (υ<0, G>>K), pentamode metamaterials (G<<K), negative compressibility (-4G/3<K<0), pattern transformation with tunable stiffness (E), ultralight and ultrastiff lightweight (E/ρ), negative thermal expansion. Based on the lattice and chiral/antichiral structure, we review the architected mechanical metamaterials and unexplored properties. This provides a broad overview of significant potential mechanical metamaterials together with the upcoming challenges in the intriguing and promising research field.
更新日期/Last Update:
2018-12-29