[1]楊高潔,陳俊孚,吳蘇州,等.仿生骨組織工程材料的微納制造與性能研究[J].中國(guó)材料進(jìn)展,2020,(09):691-700.[doi:10.7502/j.issn.1674-3962.201906002]
YANG Gaojie,CHEN Junfu,WU Suzhou,et al.Micro/Nano-Fabrication and Properties of Biomimetic Bone Tissue Engineering Materials[J].MATERIALS CHINA,2020,(09):691-700.[doi:10.7502/j.issn.1674-3962.201906002]
點(diǎn)擊復(fù)制
仿生骨組織工程材料的微納制造與性能研究(
)
中國(guó)材料進(jìn)展[ISSN:1674-3962/CN:61-1473/TG]
- 卷:
-
- 期數(shù):
-
2020年第09期
- 頁(yè)碼:
-
691-700
- 欄目:
-
- 出版日期:
-
2020-09-30
文章信息/Info
- Title:
-
Micro/Nano-Fabrication and Properties of Biomimetic Bone Tissue Engineering Materials
- 文章編號(hào):
-
1674-3962(2020)09-0691-10
- 作者:
-
楊高潔1; 2; 陳俊孚2; 吳蘇州2; 李麗坤3; 劉昱4
-
(1. 華中科技大學(xué)材料科學(xué)與工程學(xué)院,湖北 武漢 430074)(2. 深圳晶萊新材料科技有限公司,廣東 深圳 518000)(3. 廣東省焊接技術(shù)研究所,廣東 廣州 510650)(4. 華中科技大學(xué)生命科學(xué)與技術(shù)學(xué)院,湖北 武漢 430074)
- Author(s):
-
YANG Gaojie1; 2; CHEN Junfu2; WU Suzhou2; LI Likun3; LIU Yu4
-
(1. Department of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China) (2. Shenzhen Jinglai New Material Technology Co, Ltd, Shenzhen 518000, China) (3. Guangdong Welding Institute, Guangzhou 510650, China) (4. Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)
-
- 關(guān)鍵詞:
-
仿生; 微納制造; 成骨分化; 血管化; 骨再生
- Keywords:
-
biomimetic; micro/nanofabrication; osteogenesis; angiogenesis; bone regeneration
- 分類號(hào):
-
R318.08; TN305.7
- DOI:
-
10.7502/j.issn.1674-3962.201906002
- 文獻(xiàn)標(biāo)志碼:
-
A
- 摘要:
-
通過在植入材料表面構(gòu)建仿生微納結(jié)構(gòu),可以為機(jī)體細(xì)胞提供有利的微環(huán)境,從而提高細(xì)胞活性并促進(jìn)組織修復(fù)。然而,到目前為止仍沒有一種有效的骨組織工程材料能在成分和結(jié)構(gòu)上同時(shí)模擬天然骨。因此,采用仿生礦化法復(fù)合微納制造技術(shù)在仿生骨修復(fù)材料中構(gòu)建了大規(guī)?煽氐奈⒓{結(jié)構(gòu),并且首次在體內(nèi)證明了該材料的成分和可控有序的微納結(jié)構(gòu)能夠長(zhǎng)效促進(jìn)血管化骨再生。研究結(jié)果表明:首先,通過復(fù)合高分子模板實(shí)現(xiàn)對(duì)仿生礦化羥基磷灰石納米顆粒(HANPs)形貌的調(diào)控,而且微接觸法將有序的微米圖案大規(guī)模地整合入骨組織工程材料中;其次,大鼠間充質(zhì)干細(xì)胞(rMSCs)在該仿生骨組織工程材料表面表現(xiàn)出高度取向生長(zhǎng),其成血管分化和成骨分化表達(dá)增加;同時(shí),構(gòu)建的大鼠顱骨缺損模型也證明了該仿生骨組織工程材料能促進(jìn)血管化膜內(nèi)成骨。這為控制干細(xì)胞定向分化提供了一種先進(jìn)的研究平臺(tái),并為構(gòu)建基于仿生微納結(jié)構(gòu)的新型仿生骨組織工程材料提供了有力的理論基礎(chǔ)和實(shí)際依據(jù),具有潛在的臨床應(yīng)用價(jià)值。
- Abstract:
-
Integrating biomimetic micro-nano structure on implants surface can provide a favorable microenvironment for organism cell, so as to effectively increase the cellular activity and improve tissue repairing. However, there are few appropriate bone tissue engineering materials which could simultaneously simulate native bone in the aspect of composition and structure at present. Therefore, biomimetic bone tissue engineering materials with large-scale controllable micro-nano structures were prepared by combining biomineralization and micro/nano-fabrication in this work. Moreover, it was the first time to prove that their composition and controllable ordered micro-nano structure could facilitate the regeneration of vascularized bone. The results have shown that, firstly, mineralized hydroxyapatite nanoparticles (HANPs) with different microstructures were synthesized by different composite polymer templates. And, large-scale ordered micropatterns were integrated on the biomimetic bone tissue engineering materials by micro-contact method. Secondly, rat mesenchymal stem cells (rMSCs) cultured on the surface of biomimetic bone tissue engineering materials present highly orientated alignment. The angiogenesis and osteogenesis expressions of rMSCs increase. Meanwhile, we also found the biomimetic bone tissue engineering materials promoting vascularized intramembranous ossification via a rat skull defect model. This work provides an advanced platform for manipulating directional differentiation of stem cells, as well as gives a theoretical and practical foundation for preparing novel biomimetic bone tissue engineering materials with micronano structures. It is a potential application for this materials in clinic.
備注/Memo
- 備注/Memo:
-
收稿日期:2019-06-01 修回日期:2019-11-20 基金項(xiàng)目:國(guó)家自然科學(xué)基金面上項(xiàng)目(81471792)第一作者:楊高潔,女,1984年生,博士, Email:gaojiey1128@gmail.com
更新日期/Last Update:
2020-08-28