參考文獻(xiàn)/References:
[1] BIRKETT J E, CARROTT M J, FOX O D, et al. Recent Developments in the Purex Process for Nuclear Fuel Reprocessing: Complexant Based Stripping for Uranium/Plutonium Separation[J]. CHIMIA International Journal for Chemistry, 2005, 59(12): 898-904.
[2] HERBST R, BARON P, NILSSON M. Standard and Advanced Separation: PUREX Processes for Nuclear Fuel Reprocessing[M]. Advanced separation techniques for nuclear fuel reprocessing and radioactive waste treatment. Elsevier. 2011: 141-75.
[3] GANESH S, DESIGAN N, PANDEY N K, et al. Extraction Studies of Gadolinium Relevant to Its Use as Neutron Poison in the PUREX Process[J]. Progress in Nuclear Energy, 2017, 98(234-238.
[4] 王峰, 王快社, 馬林生, 等. 核級鋯及鋯合金研究狀況及發(fā)展前景[J]. 兵器材料科學(xué)與工程, 2012, 35(1): 107-110.
(WANG F, WANG K-S, MA L-S, et al. Research Status and Development Prospect of Nuclear Grade Zirconium and Zirconium Alloys[J]. Ordnance Material Science and Engineering, 2012, 35(1): 107-110.)
[5] CHABAN N, KUZ’3MA Y B, BILONIZHKO N, et al. Dopov. Akad. Nauk Ukr. RSR, Ser. A [M]. A. 1979.
[6] CHANDRASEKARAN S, BASU P, KRISHNAN H, et al. Development of Gadolinium (Neutron poison) monitoring system for fuel reprocessing facilities: computational model and validation with experiments[J]. Progress in Nuclear Energy, 2018, 107(57-60).
[7] ROBINO C, MICHAEL J, DUPONT J, et al. Development of Gd-Enriched Alloys for Spent Nuclear Fuel Applications - Part 1: Preliminary Characterization of Small Scale Gd-Enriched Stainless Steels[J]. Journal of Materials Engineering and Performance, 2003, 12(206-14.
[8] 趙建. 西門子應(yīng)用含硼不銹鋼的經(jīng)驗(yàn)[J]. 國外核動力, 1999, 20(3): 30-5.
(ZHAO J. Siemens Experience in the Application of Stainless Steel Containing Boron[J]. Foreign nuclear power, 1999, 20(3): 30-5.)
[9] HE J. The Effect of Boron Content, Temperature, and Neutron Fluence on the Mechanical Properties of the Modified Type 304 Stainless Steels with Boron[M]. The Pennsylvania State University, 1996.
[10] J H. High Born Steels[J]. Desestret Franch A, 1958.
[11] SHONO A, TSUNODA H, TAKEMURA M, et al. Development of Shielding Analysis Method for Large Fast Reactor Summary Results of Japanese-American Shielding Program for Experimental Research (JASPER)[J]. Nippon Genshiryoku Gakkai-Shi, 1996, 38(9): 760-70.
[12] HAN-GUANG F, ZHEN-HUA L, YONG-PING L, et al. Structural Variations in Heat Treated B-bearing Stainless Steel[J]. Materials & design, 2009, 30(3): 885-91.
[13] JI CHANGSONG. Neutron Detection Methods[M]. Beijing: Atomic Energy Press, 1998, 173-4.
[14] 劉常升, 崔虹雯, 陳歲元, 等. 高硼鋼的組織與性能[J]. 東北大學(xué)學(xué)報(自然科學(xué)版), 2004, 25(3): 247-9.
(LIU C-J, CUI H W, CHEN S Y, et al. Microstructure and Properties of High Boron Steel[J]. Journal of Northeastern University (Natural Science Edition), 2004, 25(3): 247-9.)
[15] 王章濤. 含硼鋼的制備、微觀組織及性能的研究 [D]; 東北大學(xué), 2001.
(WANG Z-T. Study on Preparation, Microstructure and Properties of Boron Containing Steel [D]. Northeastern University, 2001.)
[16] ACOSTA P, JIM NEZ J A, FROMMEYER G, et al. Microstructural Characterization of an Ultrahigh Carbon and Boron Tool Steel Processed by Different Routes[J]. Materials Science and Engineering: A, 1996, 206(2): 194-200.
[17] JIM NEZ J A, ADEVA P, CRISTINA M, et al. Characterization of Rapidly Solidified Ultrahigh Boron Steels[J]. Materials Science and Engineering: A, 1992, 159(1): 103-9.
[18] JIM NEZ J A, GONZ LEZ‐DONCEL G, RUANO O A. Mechanical Properties of Ultrahigh Boron Steels[J]. Advanced Materials, 1995, 7(2): 130-6.
[19] ACOSTA P, JIM NEZ J A, FROMMAYER G, et al. Superplastic behavior of thermomechanically processed Fe0.8B1.3C-1.6Cr (wt%) alloy[J]. Materials Letters, 1996, 26(1): 97-101.
[20] YANG L, WENJUN X, ZEHUA D, et al. TiC/TiB_2-FeNiCr Composite Prepared by Thermite Reaction[J]. Rare Metal Materials and Engineering, 2015, 44(3): 688-91.
[21] 佴啟亮, 鄭文杰, 宋志剛, 等. 固溶處理對含硼不銹鋼組織和性能的影響[J]. 熱加工工藝, 2013, 42(10): 212-5.
(NAI Q-L, ZHENG W-J, SONG Z-G, et al. Effect of Solution Treatment on Microstructure and Properties of Stainless Steel Containing Boron[J]. Hot Working Technology, 2013, 42(10): 212-5.)
[22] SMITH R J, LOOMIS G W, DELTETE C P. Borated Stainless Steel Application in Spent-Fuel Storage Racks. Final Report[R]. Electric Power Research Inst., 1992.
[23] GOL’DSHTEIN Y E, MIZIN V G. Some Peculiarities of the Structure of High Boron Steels[J]. Metal Science & Heat Treatment, 1988, 30(7): 479-84.
[24] ZHAO P. Effect of Annealing on the Microstructure of High Boron Steel Containing Zr[J]. Journal of Xihua University, 2010.
[25] LIU Z-L, CHEN X, LI Y-X, et al. High Boron Iron-Based Alloy and its Modification[J]. Journal of Iron and Steel Research International, 2009, 16(3): 37-42.
[26] YONG X, ZHIGUO C, XIANG W, et al. Influence of Ce on Microstructure and Properties of High-Carbon High-Boron Steel[J]. Rare Metal Materials and Engineering, 2015, 44(6): 1335-9.
[27] LI B, LIU Y, HE L, et al. Fabrication of in Situ TiB2 Reinforced Steel Matrix Composite by Vacuum Induction Melting and Its Microstructure and Tensile Properties[J]. International Journal of Cast Metals Research, 2010, 23(4): 211-5.
[28] LIU Y, LI B, LI J, et al. Effect of Titanium on the Ductilization of Fe-B Alloys with High Boron Content[J]. Materials Letters, 2010, 64(11): 1299-301.
[29] LI B, LIU Y, LI J, et al. Effect of Tungsten Addition on the Microstructure and Tensile Properties of in Situ TiB2/Fe Composite Produced by Vacuum Induction Melting[J]. Materials & Design, 2010, 31(2): 877-83.
[30] BAKER H. ASM Handbook Volume 03: Alloy Phase Diagrams [M]. USA: ASM International. 1992.
[31] DUPONT J, ROBINO C, MICHAEL J, et al. Physical and Welding Metallurgy of Gd-Enriched Austenitic Alloys for Spent Nuclear Fuel Applications-Part I: Stainless Steel Alloys[J]. WELDING JOURNAL-NEW YORK, 2004, 83(11): 289-S.
[32] KHAN Z. Influence of gadolinium on the microstructure and Mechanical Properties of Steel and stainless Steel[J]. Journal of the Southern African Institute of Mining and Metallurgy, 2012, 112(4): 309-21.
[33] ZHANG W, LI C, SU X, et al. An Updated Evaluation of the Fe-Gd (Iron-Gadolinium) System[J]. Journal of phase equilibria, 1998, 19(1): 56.
[34] MIZIA R, MICHAEL J, WILLIAMS D, et al. Physical and Welding Metallurgy of Gd-enriched Austenitic Alloys for Spent Nuclear Fuel Applications Part II: Nickel-Based Alloys[J]. Welding Journal, 2004, 83(289-300.
[35] SOV. Powder Metall Met Ceram (Engl Transl), 1969, 9(8(80)): 657-9.
[36] PLOTNIKOVA A, ILYUSHCHENKO N, ANFINOGENOV A, et al. Thermodynamic and Metallographic Investigations of the System Boron-iron[J]. Tr. Inst. Elektrokhim., Ural. Nauch. Tsentr. Akad. Nauk SSSR, 1972(18):112-118.
[37] 劉承新. 鋯合金在核工業(yè)中的應(yīng)用現(xiàn)狀及發(fā)展前景[J]. 稀有金屬快報, 05): 21-3.
(LIU C-X. Application Status and Development Prospect of Zirconium Alloy in Nuclear Industry [J]. Rare Metals Letters, 2004, 023(005):21-23.)
[38] 呂鎮(zhèn)和, 鄭杰, 陸巖. B4C-Zr-2彌散合金的研制[J]. 稀有金屬, 1996, 3): 187-92.
(LV Z H, ZHENG J, LU Y. Preparation of B4C-Zr-2 Dispersion Alloy [J]. Rare Metals, 1996, 3): 187-92.)
[39] DUNNING D, ANDERSON W, MERTENS P. Boron Containing Control Materials[J]. Nuclear Science and Engineering, 1958, 4(3): 402-14.
[40] 夏生蘭. B4C+Zr-2的氧化[J]. 核動力工程, 1989, 10(3):4.
(XIA S-L. Oxidation of B4C+Zr-2[J]. Nuclear Power Engineering, 1989, 10(3):4.)
[41] 尹耀錚. 可燃毒物在輕水反應(yīng)堆中的應(yīng)用[J]. 國外核技術(shù), 1981, 1(4): 1-2.
(YIN Y-Z. Application of Combustible Toxicants in Light Water REACTOR [J]. Foreign Nuclear Technology, 1981, 1(4): 1-2.
[42] BIRZHEVOI G, BYKOV V, RUDENKO V, et al. Study of Swelling of Irradiated Zr-B alloys[J]. Fizika Metallov i Metallovedenie, 1979, 47(4): 763-768.
[43] 熊繼初. B4C-Zr-2可燃毒物的輻照性能及其評價[J]. 核動力工程, 11(2): 84-8.
(XIONG J-C. Irradiation Properties and Evaluation of B4C-Zr-2 Combustible Toxicants[J]. Nuclear Power Engineering, 11(2): 84-8.)
[44] KITANO Y, KUROSAKI K, KIMURA H, et al. Effects of Zr/Gd Ratio and Hydrogen content on the Mechanical and Thermal Properties of Hydrides of Zr-Gd Alloys[J]. Transactions of the Atomic Energy Society of Japan, 2011, 10(1): 48-54.
[45] KITANO Y, KUROSAKI K, ITO M, et al. Fabrication and Mechanical Characterization of Zirconium and Gadolinium Hydrides[J]. Journal of Nuclear Materials, 389(1): 170-2.
[46] OKAMOTO H. B-Zr (Boron-Zirconium)[J]. Journal of Phase Equilibria, 1993, 14(2): 261-2.
[47] ROGL P, POTTER P. A Critical Review and Thermodynamic Calculation of the Binary System: Zirconium-Boron[J]. Calphad, 1988, 12(2): 191-204.
[48] OKAMOTO H. Supplemental Literature Review of Binary Phase Diagrams: Au-Ce, B-Pr, Bi-Gd, Bi-Ho, Cd-Sr, Ga-Ti, Gd-Pb, Gd-Ti, Mg-Mn, Mn-Nd, Nd-Ni, and Ni-Ti[J]. Journal of Phase Equilibria and Diffusion, 2015, 36(4): 390-401.
[49] OKAMOTO, HIROAKI. Supplemental Literature Review of Binary Phase Diagrams: Ag-Sn, Al-Pd, Ba-Gd, Ba-Pr, Cu-P, Dy-Ni, Ga-Mn, Gd-Sb, Gd-Zr, Ho-Te, Lu-Sb, and Mn-Nb[J]. Journal of Phase Equilibria & Diffusion, 35(1): 105-16.
[50] MATTERN N, HAN J H, ZINKEVICH M, et al. Experimental and Thermodynamic Assessment of the Gd–Zr System[J]. Calphad, 2012, 39: 27-32.
[51] COPELAND M I, ARMANTROUT C E, KATO H. Zirconium-Gadolinium Equilibrium Diagram (Vol. 5850) [M]. US Department of the Interior, Bureau of Mines, 1961.
[52] MASSALSKI T. Binary Alloy Phase Diagrams ASM International[J]. Materials Park, OH, 1990, 1442-6.
[53] ZINKEVICH M, MATTERN N, SEIFER H J. Thermodynamic Assessment of Gd-Zr and Gd-Mo Systems[J]. Journal of Phase Equilibria, 2001, 22(1): 43-50.
[54] OKAMOTO H. Gd-Zr (Gadolinium-Zirconium)[J]. Journal of Phase Equilibria and Diffusion, 2005, 26(1): 100.
[55] HE W, HE J, WANG X, et al. Isothermal Section of the Gd–Zr–Si Ternary System at 773 K[J]. Journal of alloys and compounds, 2010, 494(1-2): 128-31.
[56] KAZAKOV V A, POKROVSKY A S, SMIRNOV A V. Strengthening and Void Formation in the Mo-Zr-B Alloy Under Neutron Irradiation[J]. Nuclear Technology, 1981, 53:3(3): 392-406.
[57] KAZAKOV V, POKROVSKIJ A, SMIRNOV A. Mechanical Properties and Structure of Refractory Metal Base Alloys Exposed to Neutron Irradiation[J].
[58] 吳金平, 楊英麗, 奚正平, 等. Ti35合金焊接接頭在高溫硝酸中的腐蝕性能研究[J]. 鈦工業(yè)進(jìn)展, 2012, 29(1): 22-5.
(WU J-P, YANG Y-L, XI Z-P, et al. Corrosion Behavior of Ti35 Alloy Welded Joint in High Temperature Nitric Acid [J]. Titanium Industry Progress, 2012, 29(1): 22-5.)
[59] PREDEL F. Phase Equilibria, Crystallographic and Thermodynamic Data of Binary Alloys: Ti-Ta [M]. Berlin: Springer, 2013.
[60] M LEK J, HNILICA F, VESEL J. Beta Titanium Alloy Ti35Nb6Ta with Borin Addition Beta Titanova Slitina Ti35Nb6Ta S P??DAVKEM B?RU[J]. Metal, 2012. 5:23-25.
[61] MURRAY J, LIAO P, SPEAR K. The B-Ti (Boron-titanium) System[J]. Bulletin of Alloy Phase Diagrams, 1986, 7(6): 550-5.
[62] OUYANG X, YIN F, HU J, et al. Thermodynamic Modeling of B-Ta and B-C-Ta Systems[J]. Journal of Phase Equilibria and Diffusion, 2017, 38(6): 874-886.
[63] KAUFMAN L. Coupled Thermochemical and Phase Diagram Data for Tantalum Based Binary Alloys[J]. Calphad, 1991, 15(3): 243-59.
[64] KABAN I, NOWAK R, SHULESHOVA O, et al. Sessile Drop Study of Gd–Ti Monotectic Alloys on Ceramic Substrates: Phase Transformations, Wetting, and Reactivity[J]. Journal of Materials Science, 2012, 47(24): 8381-6.
[65] MATTERN N, HAN J, FABRICHNAYA O, et al. Experimental and Thermodynamic Assessment of the Gd–Ti System[J]. Calphad, 2013, 42(19-26.
[66] PREDEL F. Crystallographic and Thermodynamic Data of Binary Alloys:Gd-Ta (Gadolinium-Tantalum)[J]. Phase Equilibria, 2013, Berlin Springer, Heidelberg, 2013: 130-130.
[67] DONG C, WANG Z-J, ZHANG S, et al. Review of Structural Models for the Compositional Interpretation of Metallic Glasses[J]. International Materials Reviews, 2020, 65(5): 286-96.
[68] DONG D, WANG Q, DONG C, et al. Molecule-like Chemical Units in Metallic Alloys[J]. Science China Materials, 2021, 64(10): 2563-71.
[69] 趙亞軍. 基于團(tuán)簇模型設(shè)計(jì)的 Cu-Ni-Mo 合金的結(jié)構(gòu)及導(dǎo)電性[D]; 大連理工大學(xué), 2012.
(ZHAO Y J. Structure and Electrical Conductivity of Cu-Ni-Mo Alloy Designed Based on Cluster Model[D]. Dalian University of Technology, 2012.)
[70] LI H, ZHAO Y, LI X, et al. Electrical Resistivity Interpretation of Ternary Cu–Ni–Mo Alloys Using a Cluster-Based Short-Range-Order Structural Model[J]. Journal of Physics D: Applied Physics, 2015, 49(3): 035306.C;