[1]王齊森,胡文強,馬仲亮,等.鎂(含鎂)系儲氫材料的研究歷程與發(fā)展態(tài)勢[J].中國材料進展,2024,43(12):1064-1076.[doi:10.7502/j.issn.1674-3962.202407015]
WANG Qisen,HU Wenqiang,MA Zhongliang,et al.Research Progress and Development Trends of Magnesium-Based (or Magnesium-Containing)Hydrogen Storage Materials[J].MATERIALS CHINA,2024,43(12):1064-1076.[doi:10.7502/j.issn.1674-3962.202407015]
點擊復(fù)制
鎂(含鎂)系儲氫材料的研究歷程與發(fā)展態(tài)勢(
)
中國材料進展[ISSN:1674-3962/CN:61-1473/TG]
- 卷:
-
43
- 期數(shù):
-
2024年第12期
- 頁碼:
-
1064-1076
- 欄目:
-
- 出版日期:
-
2024-12-30
文章信息/Info
- Title:
-
Research Progress and Development Trends of Magnesium-Based (or Magnesium-Containing)Hydrogen Storage Materials
- 文章編號:
-
1674-3962(2024)12-1064-13
- 作者:
-
王齊森; 胡文強; 馬仲亮; 王飛; 劉洋; 夏廣林; 宋云; 方方; 余學(xué)斌; 張慶安; 孫大林
-
1. 復(fù)旦大學(xué)材料科學(xué)系,上海 200433
2. 安徽工業(yè)大學(xué)材料科學(xué)與工程學(xué)院,安徽 馬鞍山243002
- Author(s):
-
WANG Qisen; HU Wenqiang; MA Zhongliang; WANG Fei; LIU Yang; XIA Guanglin; SONG Yun; FANG Fang; YU Xuebin; ZHANG Qingan; SUN Dalin
-
1. Department of Materials Science, Fudan University, Shanghai 200433, China
2. School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China
-
- 關(guān)鍵詞:
-
儲氫合金; 配位氫化物; 外場; 成分優(yōu)化; 結(jié)構(gòu)調(diào)整
- Keywords:
-
hydrogen storage alloys; coordination hydrides; external field; composition optimization; structural adjustment
- 分類號:
-
TG139+.7;TG146.22
- DOI:
-
10.7502/j.issn.1674-3962.202407015
- 文獻標(biāo)志碼:
-
A
- 摘要:
-
鎂(含鎂)系儲氫材料作為固態(tài)儲氫技術(shù)的工作介質(zhì),具有高重量儲氫密度和高體積儲氫密度的突出優(yōu)勢,但其吸/放氫溫度高、速率慢、可逆性差等難點問題一直沒有得到有效解決,嚴(yán)重阻礙了其實際應(yīng)用。按照化學(xué)鍵性質(zhì)的區(qū)別,鎂(含鎂)系儲氫材料可分為合金和配位化合物兩大類。過去幾十年的研究工作主要集中在通過改變成分和結(jié)構(gòu)、加入摻雜(催化)劑、構(gòu)建微納結(jié)構(gòu)和失穩(wěn)體系等手段來解決這些問題。但從實際效果上來看,在改善動力學(xué)方面的進展要大于熱力學(xué)方面,使用鎂(含鎂)系儲氫材料的過程中仍需要通過傳統(tǒng)電加熱的方式提供額外能量,以克服吸/放氫反應(yīng)的熱力學(xué)和動力學(xué)能壘,這導(dǎo)致了能量轉(zhuǎn)化效率降低。最新的研究表明,通過直接或間接地利用非電加熱形式(太陽能和工業(yè)余熱)的外場能量,有望解決能效低的問題,為鎂(含鎂)系儲氫材料的實際應(yīng)用帶來新曙光;仡櫫随V(含鎂)系儲氫材料的研發(fā)歷程,闡述了各階段取得的標(biāo)志性進展,分析和探討了今后的研究方向。
- Abstract:
-
Magnesium-based (or magnesium-containing) materials are the promising solid hydrogen storage mediums due to the high gravimetric and volumetric hydrogen storage density. However, the high operation temperature, slow kinetics, and capacity decay severely limit their practical application. Based on the differences in chemical bonding, magnesium-based (or magnesiumcontaining) storage materials are divided into alloys and coordination compounds. Over the past decades, much research has been undertaken to address the above mentioned issues through adjusting composition/structure, doping catalyst, micro-nanosizing and combing with other hydrides, resulting in significant improvements in kinetics rather than thermodynamics. Therefore, extra electric heating is still required to facilitate hydrogenation/dehydrogenation, which causes the low energy efficiency.Recent research focused on non-electrical heating energy, such as solar energy and waste heat, either directly or indirectly, providing new possibilities for the practical application of magnesium-based (or magnesiumcontaining) hydrogen storage materials. This paper reviews the development of magnesium-based (or magnesium-containing) hydrogen storage materials and the milestones at each stage. Furthermore, the research direction is analyzed and discussed.
備注/Memo
- 備注/Memo:
-
收稿日期:2024-07-21修回日期:2024-10-23
基金項目:國家重點研發(fā)計劃項目(2022YFB4004301);國家自然
科學(xué)基金項目(52071083)
第一作者:王齊森,男,1999年生,博士研究生
通訊作者:孫大林,男,1964年生,教授,博士生導(dǎo)師,
Email:dlsun@fudan.edu.cn
更新日期/Last Update:
2024-12-31